Skip to content
START FOR FREE
START FOR FREE
  • SUPPORT
  • COMMUNITY
Menu
  • SUPPORT
  • COMMUNITY
MENUMENU
  • Products
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      Watch a TigerGraph Demo

      TIGERGRAPH CLOUD

      • Overview
      • TigerGraph Cloud Suite
      • FAQ
      • Pricing

      USER TOOLS

      • GraphStudio
      • Insights
      • Application Workbenches
      • Connectors and Drivers
      • Starter Kits
      • openCypher Support

      TIGERGRAPH DB

      • Overview
      • GSQL Query Language
      • Compare Editions

      GRAPH DATA SCIENCE

      • Graph Data Science Library
      • Machine Learning Workbench
  • Solutions
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      Watch a TigerGraph Demo

      Solutions

      • Solutions Overview

      INCREASE REVENUE

      • Customer Journey/360
      • Product Marketing
      • Entity Resolution
      • Recommendation Engine

      MANAGE RISK

      • Fraud Detection
      • Anti-Money Laundering
      • Threat Detection
      • Risk Monitoring

      IMPROVE OPERATIONS

      • Supply Chain Analysis
      • Energy Management
      • Network Optimization

      By Industry

      • Advertising, Media & Entertainment
      • Financial Services
      • Healthcare & Life Sciences

      FOUNDATIONAL

      • AI & Machine Learning
      • Time Series Analysis
      • Geospatial Analysis
  • Customers
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      CUSTOMER SUCCESS STORIES

      • Ford
      • Intuit
      • JPMorgan Chase
      • READ MORE SUCCESS STORIES
      • Jaguar Land Rover
      • United Health Group
      • Xbox
  • Partners
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      PARTNER PROGRAM

      • Partner Benefits
      • TigerGraph Partners
      • Sign Up
      TigerGraph partners with organizations that offer complementary technology solutions and services.​
  • Resources
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      BLOG

      • TigerGraph Blog

      RESOURCES

      • Resource Library
      • Benchmarks
      • Demos
      • O'Reilly Graph + ML Book

      EVENTS & WEBINARS

      • Graph+AI Summit
      • Graph for All - Million Dollar Challenge
      • Events &Trade Shows
      • Webinars

      DEVELOPERS

      • Documentation
      • Ecosystem
      • Developers Hub
      • Community Forum

      SUPPORT

      • Contact Support
      • Production Guidelines

      EDUCATION

      • Training & Certifications
  • Company
    • Join the World’s Fastest and Most Scalable Graph Platform

      WE ARE HIRING

      COMPANY

      • Company Overview
      • Leadership
      • Legal Terms
      • Patents
      • Security and Compliance

      CAREERS

      • Join Us
      • Open Positions

      AWARDS

      • Awards and Recognition
      • Leader in Forrester Wave
      • Gartner Research

      PRESS RELEASE

      • Read All Press Releases
      TigerGraph Reports Exceptional Customer Growth and Product Leadership as More Market-Leading Companies Tap the Power of Graph
      March 1, 2023
      Read More »

      NEWS

      • Read All News
      The-New-Stack-Logo-square

      Multiple Vendors Make Data and Analytics Ubiquitous

      TigerGraph enhances fundamentals in latest platform update

  • START FREE
    • The World’s Fastest and Most Scalable Graph Platform

      GET STARTED

      • Request a Demo
      • CONTACT US
      • Try TigerGraph
      • START FREE
      • TRY AN ONLINE DEMO

Enterprise Knowledge Graph Trends for 2021

  • Emily McAuliffe
  • January 19, 2021
  • blog, Graph Database Market
  • Blog >
  • Enterprise Knowledge Graph Trends for 2021

Image for post

Originally posted on Medium by Dan McCreary, Distinguished Engineer, Optum.

This is my third annual post on Enterprise Knowledge Graph (EKG) trends. You can also find my 2019 and 2020 posts on this blog, and I think you will find several consistent patterns in these three posts.

Graph Database Continue to Grow in Popularity

Interest continues to grow in EKGs. We can see from the DB-Engines popularity change chart below that Graph Databases still outpace interest growth of all other database types by a wide margin.

Image for post

In the DB-Engine taxonomy, the Graph DBMS trend lines exclude RDF stores that are tracked separately. RDF stores (triple stores) are not experiencing the same growth in interest as the graph database industry.

The continued industry-wide acceptance of graph databases as an option to traditional relational databases has been gratifying for me. Like me, other senior solution architects believe that relational databases have had a good run but are no longer giving organizations a competitive advantage in the marketplace. There are enough solid use cases of real cost-saving at large organizations that EKGs are now Crossing the Chasm to be used not just by innovators and early adopters, but by customers in the early majority that purchase based on references of documented cost-savings and increased agility.

Alongside the growth in graph databases, we have also seen a growth in the term “Enterprise Knowledge Graph,” with many writers and organizations weighing how they define EKGs. Since my background is in scale-out NoSQL architectures, you can guess that I am somewhat biased in this area. My definitions of what defines an EKGs are all centered around the scalability of graph databases. In summary, if your graph database can’t scale to meet the enterprise-scale needs of a Fortune-500 company, you don’t really have an EKG. We should call these systems “project knowledge graphs” or “departmental knowledge graphs.” So here is my working definition of a true EKG:

An Enterprise Knowledge Graph (EKG) is a type of graph database designed to scale-out to meet large organizations’ demanding requirements to store diverse forms of connected knowledge.

Note that there are no requirements in this definition that any Semantic Web Stack components must be used to qualify as an EKG. We can still use the phrase “semantic knowledge graphs” for these systems. However, in my book, if a system can’t meet most of the six key criteria for scale-out, like the ability to automatically rebalance a cluster, I don’t classify them as true EKGs.

Words are important, and I will address these definitions again in future blogs and give precise definitions of the term “scale-out” for people who are not familiar with this concept. Our book “Making Sense of NoSQL” (co-authored by Ann Kelly) is a good starting point if you are not familiar with terms such as auto-sharding and automatically rebalancing a graph cluster as it grows.

First Public GQL Working Draft

 

Image for post

In 2021, we will see the first public working draft of the new GQL standard to query labeled property graphs. I have been meeting almost every other week with over 30 other people working on this standard. It is exciting to see the document take shape.

Although I am not an expert on query language standards, I am continually impressed with the incredible experience and dedication of the GQL standards committee. These unpaid volunteers have a common vision of how GQL can transform the database industry. I have a renewed respect for the level of detail this group is going through to create a new standard that could unite a very fragmented graph community. I hope that the GQL standard brings the best of what we have learned from SPARQL, Cypher, Gremlin, and GSQL into a new standard that allows us to express complex graph queries and graph algorithms in ways that make them 10x to 100x more accessible then what they are today.

Getting an ISO-standard graph query language that supports Labeled Property Graphs (LPGs) is one of the key trigger-points that will accelerate EKGs’ adoption. CIOs will have the confidence their server-side logic and algorithms will be portable to multiple back-end databases. Third-party software developers will jump into the market and provide turn-key solutions for enterprise-class problems that are more cost-efficient than older relational models and far more scalable.

You can see me and a panel of GQL experts talking about this topic at the GQL panel at the Graph+AI World Conference.

The Rise of Graph-Tuned Full Custom Silicon Hardware

Image for post

Because of the increased attention that graph databases are getting, we also are starting to see innovation at the hardware level. For the past 1.5 years, I have been predicting the rise of the Hardware Graph built on EKGs’ foundations. The need for custom graph hardware becomes obvious if you realized that most graph algorithms are doing simple pointer-hopping and don’t need 90% of the instructions in today’s CISC hardware. Using a RISC instruction set tuned to optimize pointer-hoping, we could fit 10x more cores on a chip and get a 10x performance boost in query performance.

Although innovative companies like Graphcore have produced innovative custom silicon hardware that has been optimized for graph traversal, their hardware requires us to rewrite our algorithms in low-level C code. And as you can guess, most enterprises want to keep their algorithms independent from a specific hardware architecture. Besides a few large organizations with C developers handy, there has not yet been widespread adoption of custom graph hardware by graph database developers.

But in 2021, I think this will all start to change.

The key turning point happened in October 2020 when Intel published their landmark paper on their new PIUMA hardware architecture that is custom designed for fast graph traversal. Much of this work was driven by the DARPA HIVE project. We all need to appreciate the DARPA team’s groundbreaking work and their willingness to allow commercial organizations to benefit from their research. I have written extensively about the fantastic work that Intel has done to deeply understand the need for a RISC instruction set and the need to radically redesign the memory subsystems to keep the RISC cores feed with data.

Redesigning memory hardware was one of the key insights that Cray and DataVortex had many years ago. Still, it was only available in custom-built high-performance supercomputing systems at incredible costs. The PIUMA architecture could prove a 10x to a 100x additional speedup for some graph algorithms on top of the 10x core speedup. My sincere hope is that the Intel PIUMA hardware could be much more affordable than a Cray Graph Engine.

If you are interested in learning more, I co-presented with the incredible Nikhil Deshpande from the Intel PIUMA team at the Graph+AI World conference.

Machine Learning in Graphs

Image for post

No topic consumed me more in 2020 than the role of machine learning in graph databases. Although were are not there yet, in the next few years, LPG graph databases will have their own “AlexNet Moment” in the AI community.

For those who have not been following AI closely, AlexNet was one of the first algorithms to utilize parallel processing and GPUs to train deep neural networks to classify images. At an image recognition contest in 2012, AlexNet achieved an incredible 10.8 percentage points lower error rate than the competition. When a 1 or 2 point annual improvement was the norm, you can see that this stunned the AI community and proved beyond any doubt that deep neural networks had many advantages over traditional machine learning algorithms.

There has been a similar rush to use deep neural networks to create predictions from data in graph databases. In December, at NeurIPS 2020, one of the world’s largest AI conferences, over 136 papers had the word “graph” in their titles. Many other papers discussed how knowledge from different domains could be analyzed by using graph representations of knowledge. In 2021 we expect to see continued innovations combining machine learning with data stored EKGs.

Embeddings Everywhere

Image for post

One of the chief tasks of deep learning is to help us classify items and find representations that can be used for fast, real-time processing, such as finding similar items. Last year, I mentioned that similarity algorithms are some of the most critical algorithms for EKGs. Similarity is at the heart of recommendation systems. Although there are many different graph algorithms to find similar items in a graph, the most common is an algorithm called Cosine Similarity. Although there are many manual ways to find the key features for building ML models, these methods are slow and require constant tuning of each feature’s weights.

What has been happening is that we are starting to use the knowledge gains in natural language processing (NLP), data science, and machine learning to help us automatically find embedding for complex LPG knowledge graph structures.

We are essentially telling a query to “randomly walk” around each vertex and determine what makes this vertex unique. Just like NLP has learned to build word embedding from the unlabeled text, we use random walk algorithms to build sentences that describe a vertex.

To learn more, I wrote a detailed blog on Understanding Graph Embeddings in November of 2020.

Once we have these Embeddings, we can use custom Field Programmable Gate Arrays (FPGA) hardware to find similar items using efficient parallel processing techniques quickly. Given high-quality embeddings produced by machine learning, a typical FPGA can find the 100 most similar items in a set of 10 million items in under 50 milliseconds! You can learn more about using FPGAs to find similar items in an EKG at the talk I did with the fantastic Kumar Deepak from Xilinx at the Graph+AI World Conference.

Using an FPGA to quickly find hundreds of similar items among millions in 1/20th of a second is not just a one-time trick. FPGAs are universal tools for doing many parallel computations in graphs. Everyone building EKGs should have a deep appreciation of when algorithms are serial and when they can be done in parallel. The question “Can we speed this up by using an FPGA” should be top of mind when real-time graph queries are needed. I will be writing more about how FPGAs are used in graphs in 2021.

Vertex-level Role-Based Access Controls

Image for post
 

One of the defining features of enterprise knowledge graphs is their ability to give many developers (hundreds to thousands of concurrent developers) direct query-level access to the graph database. The challenge with many other technologies such as Data Lakes is that they don’t allow fine-grain access to individual vertices and edges. In 2020 we saw the first introduction of vertex-level role-based access control(RBAC) rules by enterprise graph vendors.

This means that we no longer need to restrict graph database access to only certified application queries. Using only certified application queries was a way to provide access control to sensitive data in an enterprise graph in the application layer. However, that restricted an entire class of users that wanted to use our EKGs for ad-hoc data discovery. Discovery has been one of the big cost-savings driving the adoption of EKGs.

The addition of vertex-level RBAC feature is critical for the continued growth of the EKG industry. Many EKG projects have been held back because they didn’t offer RBAC commonly available in RDBMS systems, although at the row-level of a table, not a graph’s vertex-level. Now that this feature is available in commercial graph databases, it raises the entry barrier for other graph database startups. Vertex-level RBAC is difficult to implement at scale without a significant drop in performance.

Growth in Cloud and LPG Companies, Downsizing at Semantic Web Product Companies

Although 2020 was a banner year for many graph companies, it was sadly not a great year for all of them.

Major cloud providers continued to promote their graph-based products. Although many cloud vendors are constrained by their use of Gremlin for enterprise-scale projects, they continue to push forward, building smaller project and department-level graphs. These smaller projects can still be a good training ground for organizations to experience graph databases’ power and flexibility and build graph query skills in their employees. They are essentially boot camps for teams building EKGs in the next few years.

Around mid-year, we became aware of layoffs and downsizing at some companies that remain focused on the older semantic-web stacks. Although these products still have merit for managing smaller glossaries, vocabularies, taxonomies, and ontologies, I think the COVID-pandemic struck them hard. This is also a mature space, and there is plenty of competition. Fortunately, I am already aware that a few people laid off from these firms have gone on to other graph-related projects and wish them all the best of luck. Hang in there, everyone! 2021 is going to be a lot better!

Natural Language Processing (NLP) and EKGs

Image for post
 

Of all the fields closely related to EKGs, the field that has seen the most excitement has been NLP. This has been building since the BERT paper was published in October of 2018. BERT created an “AlexNet Moment” for NLP in 2018, and there have been dozens of related projects that use unsupervised learning and Transformer models since the BERT paper was published.

The hype around a revolution in NLP and AI started to almost go out of control with the announcement of GPT-3 by OpenAI in June of 2020. This was a bit of a “show off” stunt by OpenAI to show how these language models can scale to the 175B parameter level at the cost of about $10M in training the models. The image in the figure above shows what I think is an impressive example of how GPT-3 works. I give the largest GPT-3 Davinci model a prompt of:

“The reason that enterprise knowledge graphs will continue 
to grow in popularity is because”

and it returned a pretty impressive 200-word response and cost about a penny.

Tools like BERT and GPT will slowly become a “bridge” that connects the world of documents and text with the world of EKGs. NLP services built on BERT and GPT will cost-effectively ingest millions of documents and return precisely coded concept graphs for each document linking documents that both discuss the same concept in a materialized and queryable edge between the concept graphs for each document.

Why is this important? Today, 80% of the “Knowledge” in large companies is tied up in documents like MS-Word, PDF, FAX, and HTML web pages. We know that EKGs can be useful for integrating these documents if we can extract the precise facts from the documents. Then we can encode and connect these facts as vertices in our knowledge graph. Once the facts are extracted and linked, then we can use the power of graph-machine learning to calculate embedding and find similar documents and similar concepts quickly by combining both deterministic rules and embeddings. This capability will continue to expand EKG projects’ scope and push the need for more cost-effective EKG hardware.

EKG Virtual Conferences and Communities

Despite the complete shutdown of most face-to-face in-person graph-related conferences, many virtual conferences did go forward with increased attendance from a growing worldwide audience interested in EKG topics.

The biggest new conference was the Graph+AI World conference that combined not just case studies of large enterprise knowledge graph rollouts. Still, it also had several expert panel discussion on EKG related topics. For me, it was the best conference of the year that combined sessions on EKGs mixed with a focus on GQL standards, machine learning, and NLP technologies.

I was also happy to see that the Knowledge Connections conference successfully made the leap to a fully virtual format and hosted many interesting presentations on knowledge graphs.

EKG Books, EKG Maturity Models, and EKGs Blogs and More!

I think that 2021 will be another high-growth year for EKGs, continuing to add innovation that will launch new products through 2022. Combining the GQL language, custom EKG hardware, Graph-Machine learning, NLP, and a growing library of blogs, case studies, books, and more scalable and robust EKG software customized to the needs of large organizations will continue to transform the database industry.

Conclusion: Invest Now!

Last year, we continued to see that enterprise knowledge can act like an invisible force that binds organizational data together in a consistent way. Just like gravity and magnetism, connected knowledge can pull more knowledge into the EKG. Network effects apply. EKGs have driven innovation, new insight, and clear cost savings for organizations that have implemented them.

If you are thinking about starting up a new company that leverages EKGs’ power, I think 2021 would be an ideal year to launch your company. If you are VC or angel investor, you should be looking for small startups in the graph space that combine ML, NLP with EKG technologies. These firms will quickly grow around the new GQL standards and 1,000x graph hardware accelerations we will be seeing in 2021 and beyond.

Happy New Year, everyone!

You Might Also Like

Trillion edges benchmark: new world record beyond 100TB by TigerGraph featuring AMD based Amazon EC2 instances

Trillion edges benchmark: new world record...

March 13, 2023
Graph Databases 101: Your Top 5 Questions with Non-Technical Answers

Graph Databases 101: Your Top 5...

February 7, 2023
It’s Time to Harness the Power of Graph Technology [Infographic]

It’s Time to Harness the Power...

January 25, 2023

Introducing TigerGraph 3.0

July 1, 2020

Everything to Know to Pass your TigerGraph Certification Test

June 24, 2020

Neo4j 4.0 Fabric – A Look Behind the Curtain

February 7, 2020

TigerGraph Blog

  • Categories
    • blogs
      • About TigerGraph
      • Benchmark
      • Business
      • Community
      • Compliance
      • Customer
      • Customer 360
      • Cybersecurity
      • Developers
      • Digital Twin
      • eCommerce
      • Emerging Use Cases
      • Entity Resolution
      • Finance
      • Fraud / Anti-Money Laundering
      • GQL
      • Graph Database Market
      • Graph Databases
      • GSQL
      • Healthcare
      • Machine Learning / AI
      • Podcast
      • Supply Chain
      • TigerGraph
      • TigerGraph Cloud
    • Graph AI On Demand
      • Analysts and Research
      • Customer 360 and Entity Resolution
      • Customer Spotlight
      • Development
      • Finance, Banking, Insurance
      • Keynote
      • Session
    • Video
  • Recent Posts

    • Trillion edges benchmark: new world record beyond 100TB by TigerGraph featuring AMD based Amazon EC2 instances
    • Overview of Graph and Machine Learning with TigerGraph | Mar 8 @ 11am PST
    • Gartner Data & Analytics Summit 2023, London
    • Gartner Data and Analytics Summit, Orlando
    • Transaction Surveillance with Maximum Flow Algorithm
    TigerGraph

    Product

    SOLUTIONS

    customers

    RESOURCES

    start for free

    TIGERGRAPH DB
    • Overview
    • Features
    • GSQL Query Language
    GRAPH DATA SCIENCE
    • Graph Data Science Library
    • Machine Learning Workbench
    TIGERGRAPH CLOUD
    • Overview
    • Cloud Starter Kits
    • Login
    • FAQ
    • Pricing
    • Cloud Marketplaces
    USEr TOOLS
    • GraphStudio
    • TigerGraph Insights
    • Application Workbenches
    • Connectors and Drivers
    • Starter Kits
    • openCypher Support
    SOLUTIONS
    • Why Graph?
    industry
    • Advertising, Media & Entertainment
    • Financial Services
    • Healthcare & Life Sciences
    use cases
    • Benefits
    • Product & Service Marketing
    • Entity Resolution
    • Customer 360/MDM
    • Recommendation Engine
    • Anti-Money Laundering
    • Cybersecurity Threat Detection
    • Fraud Detection
    • Risk Assessment & Monitoring
    • Energy Management
    • Network & IT Management
    • Supply Chain Analysis
    • AI & Machine Learning
    • Geospatial Analysis
    • Time Series Analysis
    success stories
    • Customer Success Stories

    Partners

    Partner program
    • Partner Benefits
    • TigerGraph Partners
    • Sign Up
    LIBRARY
    • Resources
    • Benchmark
    • Webinars
    Events
    • Trade Shows
    • Graph + AI Summit
    • Million Dollar Challenge
    EDUCATION
    • Training & Certifications
    Blog
    • TigerGraph Blog
    DEVELOPERS
    • Developers Hub
    • Community Forum
    • Documentation
    • Ecosystem

    COMPANY

    Company
    • Overview
    • Careers
    • News
    • Press Release
    • Awards
    • Legal
    • Patents
    • Security and Compliance
    • Contact
    Get Started
    • Start Free
    • Compare Editions
    • Online Demo - Test Drive
    • Request a Demo

    Product

    • Overview
    • TigerGraph 3.0
    • TIGERGRAPH DB
    • TIGERGRAPH CLOUD
    • GRAPHSTUDIO
    • TRY NOW

    customers

    • success stories

    RESOURCES

    • LIBRARY
    • Events
    • EDUCATION
    • BLOG
    • DEVELOPERS

    SOLUTIONS

    • SOLUTIONS
    • use cases
    • industry

    Partners

    • partner program

    company

    • Overview
    • news
    • Press Release
    • Awards

    start for free

    • Request Demo
    • take a test drive
    • SUPPORT
    • COMMUNITY
    • CONTACT
    • Copyright © 2023 TigerGraph
    • Privacy Policy
    • Linkedin
    • Facebook
    • Twitter

    Copyright © 2020 TigerGraph | Privacy Policy

    Copyright © 2020 TigerGraph Privacy Policy

    • SUPPORT
    • COMMUNITY
    • COMPANY
    • CONTACT
    • Linkedin
    • Facebook
    • Twitter

    Copyright © 2020 TigerGraph

    Privacy Policy

    • Products
    • Solutions
    • Customers
    • Partners
    • Resources
    • Company
    • START FREE
    START FOR FREE
    START FOR FREE
    TigerGraph
    PRODUCT
    PRODUCT
    • Overview
    • GraphStudio UI
    • Graph Data Science Library
    TIGERGRAPH DB
    • Overview
    • Features
    • GSQL Query Language
    TIGERGRAPH CLOUD
    • Overview
    • Cloud Starter Kits
    TRY TIGERGRAPH
    • Get Started for Free
    • Compare Editions
    SOLUTIONS
    SOLUTIONS
    • Why Graph?
    use cases
    • Benefits
    • Product & Service Marketing
    • Entity Resolution
    • Customer Journey/360
    • Recommendation Engine
    • Anti-Money Laundering (AML)
    • Cybersecurity Threat Detection
    • Fraud Detection
    • Risk Assessment & Monitoring
    • Energy Management
    • Network Resources Optimization
    • Supply Chain Analysis
    • AI & Machine Learning
    • Geospatial Analysis
    • Time Series Analysis
    industry
    • Advertising, Media & Entertainment
    • Financial Services
    • Healthcare & Life Sciences
    CUSTOMERS
    read all success stories

     

    PARTNERS
    Partner program
    • Partner Benefits
    • TigerGraph Partners
    • Sign Up
    RESOURCES
    LIBRARY
    • Resource Library
    • Benchmark
    • Webinars
    Events
    • Trade Shows
    • Graph + AI Summit
    • Graph for All - Million Dollar Challenge
    EDUCATION
    • TigerGraph Academy
    • Certification
    Blog
    • TigerGraph Blog
    DEVELOPERS
    • Developers Hub
    • Community Forum
    • Documentation
    • Ecosystem
    COMPANY
    COMPANY
    • Overview
    • Leadership
    • Careers  
    NEWS
    PRESS RELEASE
    AWARDS
    START FREE
    Start Free
    • Request a Demo
    • SUPPORT
    • COMMUNITY
    • CONTACT
    Dr. Jay Yu

    Dr. Jay Yu | VP of Product and Innovation

    Dr. Jay Yu is the VP of Product and Innovation at TigerGraph, responsible for driving product strategy and roadmap, as well as fostering innovation in graph database engine and graph solutions. He is a proven hands-on full-stack innovator, strategic thinker, leader, and evangelist for new technology and product, with 25+ years of industry experience ranging from highly scalable distributed database engine company (Teradata), B2B e-commerce services startup, to consumer-facing financial applications company (Intuit). He received his PhD from the University of Wisconsin - Madison, where he specialized in large scale parallel database systems

    Todd Blaschka | COO

    Todd Blaschka is a veteran in the enterprise software industry. He is passionate about creating entirely new segments in data, analytics and AI, with the distinction of establishing graph analytics as a Gartner Top 10 Data & Analytics trend two years in a row. By fervently focusing on critical industry and customer challenges, the companies under Todd's leadership have delivered significant quantifiable results to the largest brands in the world through channel and solution sales approach. Prior to TigerGraph, Todd led go to market and customer experience functions at Clustrix (acquired by MariaDB), Dataguise and IBM.