Press

Press

For TigerGraph Press Releases, click HERE.

Database trends and applications

DBTA 100 2019 – The Companies That Matter Most in Data

This seventh DBTA 100 list spans a wide variety of companies that are each uniquely addressing today’s demands for hardware, software, and services.

Go To Article

The 2019 SD Times 100: ‘Best in Show’ in Software Development

Go To Article

Graph Databases Gain Momentum with Public Cloud Providers Google and Microsoft

Two recent, related partnerships between highly specialised “graph” database developers and public cloud platform providers underscores the importance of specialised databases capable of surfacing insights that would otherwise remain hidden within traditional database architectures.

Go To Article

Could graph technology reduce the risk of another economic collapse?

Why is graph technology such a step forward? Virtually all existing risk assessment and monitoring systems are built on traditional relational databases, which store information such as counterparty, account, transaction, stakeholders, financial instruments and derivatives in separate tables, one for each type of business entity.

Go To Article

Machine Learning and Deep Link Graph Analytics: A Powerful Combination

Machine learning has always been computationally demanding, and graph-based machine learning is no exception. With every hop, or level of connected data, the size of data in the search expands exponentially, requiring massively parallel computation to traverse the data. This is computationally too expensive for key-value databases which require too many separate lookups or RDBMS that struggle with too many slow joins. Even a standard graph database may not be able to handle deep link analytics on large graphs.  A native graph database featuring massively parallel and distributed processing is needed.

Go To Article

Catching Tax Cheats with Graph Databases

As criminals deploy complex strategies and modern technology for tax evasion, graph databases can be used effectively by the IRS and other agencies all over the world to catch the crooks.

Byline by VP of Marketing

Go To Article

TigerGraph Shows Graph Database Market How To Scale Out

NEW PRODUCT ANALYSIS: Unlike other graph databases that delve two to three levels deep into the connected data, TigerGraph’s pattern analytics is tuned to be efficient and tractable with the ability to go 10 or more levels deep into the interconnected entities. This is what AI and ML developers have been waiting for.

Go To Article

TigerGraph pushes out competitor at OpenCorporates

TigerGraph has announced that OpenCorporates has migrated its back end database from Neo4j to TigerGraph. This is bold decision by OpenCorporates as it demonstrates that they were unable to work with Neo4J, a competitor graph database and migrated to an alternate platform.

Go To Article

2019 will be another ‘Year of the Graph’: OpenCorporates is evidence No. 1

The vendor OpenCorporates has chosen to switch to is TigerGraph, an up and coming startup for which OpenCorporates is a showcase of what it can do. Taggart explained that this forms the basis of a mutually beneficial relationship.

TigerGraph acknowledged the nature of OpenCorporates work, as well as the high profile that comes with it, and has provided its platform to OpenCorporates under special terms. OpenCorporates wins by migrating to a platform that works for them, TigerGraph wins by getting exposure and promoting GSQL, its query language.

Go To Article

“Above the Trend Line” – Your Industry Rumor Central for 2/11/2019

TigerGraph, the fast graph analytics platform for the enterprise, announced that OpenCorporates, the open database of companies has chosen TigerGraph as its backend graph database. The move enables OpenCorporates to better support investigative queries over its open database containing records on more than 170 million companies.

Go To Article