For TigerGraph Press Releases, click HERE.

TigerGraph updates its graph analytics platform

TigerGraph has announced the latest release of its graph analytics platform. This release offers integrations with popular databases and storage systems, Docker and Kubernetes support, availability on the AWS Marketplace and Microsoft Azure, and a new graph algorithm library.

In addition to the platform update, the company also released a Neo4j Migration Toolkit. The toolkit will enable developers to transform Cypher queries into GSQL.

Go To Article

TigerGraph, Dow Jones DNA and Vertica Analytics Named Winners of First-Ever Strata Data Awards

The Strata Data Award for the Most Disruptive Startup goes to TigerGraph, a fast graph analytics platform designed to unleash the power of interconnected data for deeper insights and better outcomes.

Go To Article

Graph Processing Gives Credit Analysis Firms An Edge

According to the company, TigerGraph supports a massively parallel processing architecture in which graph nodes — the company uses the less common term “vertices” — exhibit both compute and storage features; employs a parallel loader to speed data ingestion; and has fashioned a GSQL analytics language to produce parallel graph queries.

IceKredit has found those features useful in its efforts to expand the availability of credit ratings and risk assessments, according to Minqi Xie, vice president and director of modeling and business intelligence at the financial technology company.

Go To Article

The Top 100 Innovators in Data and Analytics 2018 – Dr. Yu Xu

What would you say most motivates you to do what you do?

My biggest motivation is to enable businesses of all sizes to gain deeper insights, as well as achieve better business outcomes from their data. It’s all about enabling them to achieve what was previously impossible with modern technical solutions designed for today’s needs.

Go To Article

Leveraging graph analytics to combat money laundering

The risk of money laundering spans the entire financial services ecosystem – banks, payment providers and newer cryptocurrencies, such as Bitcoin and Ripple and more. Given how much financial activity occurs every second, everyday, it’s important for banks and financial organizations to develop a robust AML strategy that is effective in stopping fraudsters in their tracks.

However, few people outside the AML compliance profession fully appreciate how hard it can be to get it right. Thankfully, there are new technologies such as graph analytics that can help. As we dive into this topic, let’s first consider key challenges contributing to this exceedingly difficult task.

Go To Article

What Are the Criteria to Differentiate Between Graph Databases?

Graph databases have gotten much attention due to their advantages over relational models (see discussions here). However, while different technical companies rush into this area, Amazon, Microsoft, Oracle, IBM, etc., it is getting more challenging to evaluate different vendor’s product when a project wants to embark a graph database. It is recommended that purchasers or practitioners take a grain of salt before embarking on the adventure of the graph database world! That does not mean it’s hard to find the right database. The criteria in this article contain some simple and achievable steps for readers to try and get the truth.

Go To Article

The Graph is the Future of the Money Laundering Fight

A traditional AML solution would not flag an alert for this new customer. However, graph-based features dig deeper to find that new account shares a phone number with several customers with SARs. The graph-based solution creates a new AML alert missed by the traditional AML solution, marking it high risk for further monitoring and investigation. In this way, our graph-based solution finds the false negatives, or hard-to-detect money laundering cases, that would be missed using traditional solutions.

Go To Article
Database trends and applications

Is Today’s Data Market Outgrowing the Relational Database Model?

IoT is “another type of network within which we can create applications that blend what people do within that network,” said Jeff Morris, head of product marketing at Neo4j. At the same time, “it’s not enough for businesses to just accumulate data—they also have to be able to act on it,” Yu Xu, CEO of TigerGraph, pointed out. “Today, most IoT users—businesses, governments—are collecting the data but have challenges making sense of it to drive value. Imagine a city that is better able to program traffic lights to improve traffic flow based on in-the-moment feedback after an accident. Saving 30 minutes in traffic is quite meaningful.”

Go To Article

CBA’s Laundering Compliance Problems Aren’t Unique

Using linkage and network analysis enabled by the graph model, this web can be dissected with speeds and accuracy that were impossible using a relational database. Combined with conventional AML compliance tools, we can incorporate graph analytics to uncover key insights. This involves looking deep and hard at data from all types of sources — much like how our brains learn and recognize patterns of suspicious behaviors, activities and relationships — through intelligent analytics and advanced algorithms.

Go To Article

Using Graphs and Machine Learning to Find Needles in a Haystack

Fraud detection, in many ways, resembles finding needles in a haystack. You must sort and make sense of massive amounts of data in order to find your “needles” or in this case, your fraudsters.

Let’s use the example of a phone company with billions of calls occurring in its network, all on a weekly basis. How can it identify signs of fraudulent activity from its mountain — or haystack — of call logs?

Go To Article