Skip to content
START FOR FREE
START FOR FREE
  • SUPPORT
  • COMMUNITY
Menu
  • SUPPORT
  • COMMUNITY
MENUMENU
  • Products
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      Watch a TigerGraph Demo

      TIGERGRAPH CLOUD

      • Overview
      • TigerGraph Cloud Suite
      • FAQ
      • Pricing

      USER TOOLS

      • GraphStudio
      • Insights
      • Application Workbenches
      • Connectors and Drivers
      • Starter Kits
      • openCypher Support

      TIGERGRAPH DB

      • Overview
      • GSQL Query Language
      • Compare Editions

      GRAPH DATA SCIENCE

      • Graph Data Science Library
      • Machine Learning Workbench
  • Solutions
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      Watch a TigerGraph Demo

      Solutions

      • Solutions Overview

      INCREASE REVENUE

      • Customer Journey/360
      • Product Marketing
      • Entity Resolution
      • Recommendation Engine

      MANAGE RISK

      • Fraud Detection
      • Anti-Money Laundering
      • Threat Detection
      • Risk Monitoring

      IMPROVE OPERATIONS

      • Supply Chain Analysis
      • Energy Management
      • Network Optimization

      By Industry

      • Advertising, Media & Entertainment
      • Financial Services
      • Healthcare & Life Sciences

      FOUNDATIONAL

      • AI & Machine Learning
      • Time Series Analysis
      • Geospatial Analysis
  • Customers
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      CUSTOMER SUCCESS STORIES

      • Ford
      • Intuit
      • JPMorgan Chase
      • READ MORE SUCCESS STORIES
      • Jaguar Land Rover
      • United Health Group
      • Xbox
  • Partners
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      PARTNER PROGRAM

      • Partner Benefits
      • TigerGraph Partners
      • Sign Up
      TigerGraph partners with organizations that offer complementary technology solutions and services.​
  • Resources
    • The World’s Fastest and Most Scalable Graph Platform

      LEARN MORE

      BLOG

      • TigerGraph Blog

      RESOURCES

      • Resource Library
      • Benchmarks
      • Demos
      • O'Reilly Graph + ML Book

      EVENTS & WEBINARS

      • Graph+AI Summit
      • Graph for All - Million Dollar Challenge
      • Events &Trade Shows
      • Webinars

      DEVELOPERS

      • Documentation
      • Ecosystem
      • Developers Hub
      • Community Forum

      SUPPORT

      • Contact Support
      • Production Guidelines

      EDUCATION

      • Training & Certifications
  • Company
    • Join the World’s Fastest and Most Scalable Graph Platform

      WE ARE HIRING

      COMPANY

      • Company Overview
      • Leadership
      • Legal Terms
      • Patents
      • Security and Compliance

      CAREERS

      • Join Us
      • Open Positions

      AWARDS

      • Awards and Recognition
      • Leader in Forrester Wave
      • Gartner Research

      PRESS RELEASE

      • Read All Press Releases
      TigerGraph Recognized in 2022 Gartner® Critical Capabilities for Cloud Database Management Systems for Analytical Use Cases
      January 12, 2023
      Read More »

      NEWS

      • Read All News

      A Shock to the System: ShockNet Predicts How Economic Shocks Could Affect the World Economy

      TigerGraph Recognized for the First Time in the 2022 Gartner® Magic Quadrant™ for Cloud Database Management Systems

  • START FREE
    • The World’s Fastest and Most Scalable Graph Platform

      GET STARTED

      • Request a Demo
      • CONTACT US
      • Try TigerGraph
      • START FREE
      • TRY AN ONLINE DEMO

Sink Your Teeth Into FIBO with A Native Parallel Graph Database

  • TigerGraph
  • May 30, 2019
  • blog, Business, Finance, Graph Databases
  • Blog >
  • Sink Your Teeth Into FIBO with A Native Parallel Graph Database

Authored by TigerGraph Solutions and Engineering

Financial institutions have massive volumes of highly interconnected and structured data, which they need to ingest in real time and to use for a wide range of queries and reports, from simple fund transactions to machine learning-driven fraud detection and risk analysis. To provide a standard format for representing and interchanging such data, the FIBO knowledge graph ontology was developed, to use with triple-store or RDF databases.  However, while RDF databases are great for modeling and exchanging data, property graph databases offer a more efficient and intuitive object-oriented approach to storing and querying that data. The query speed for large graphs can be a deal-breaker for RDF and is a challenge for most property graphs.

Good news! TigerGraph, the fastest and most scalable graph database analytics platform, can easily ingest large and complex ontologies such as FIBO AND perform both transactional workloads and full-graph analytics at blazing speed.

1. Loading the FIBO Ontology into TigerGraph

After multiple TigerGraph implementations for the customers on semantic technologies, we were  curious about loading The Financial Industry Business Ontology (FIBO) into our property graph. We found it was very easy to do, and this has given us a newfound appreciation of how interoperable different graph technologies are and how knowledge encoded in FIBO can be leveraged in TigerGraph applications. This article gives an overview of this process.

FIBO is a large and comprehensive financial ontology built by the best minds in the semantic web over the last decade. The genesis of FIBO was the banking crisis of 2008 and the need for a common semantic model for the financial industry to understand and share their data and have a common understanding of risk. It is published and supported by the EDM Council, a financial industry consortium.

FIBO is a complex collection of ontologies. The sheer number of ontologies, classes, properties, and constraints have been known to be very challenging for semantic technologies built specifically to handle the W3C specifications. In the next section we will show you how to create an RDF graph schema, map FIBO in N-Quads to that schema, load FIBO, explore FIBO, and use FIBO to annotate data in TigerGraph applications.

Figure 1: W3C Layer Cake Diagram

2. TigerGraph RDF Schema for FIBO

FIBO is represented in W3C OWL, which is defined on top of RDFS, which in turn is layered on RDF (See Figure 1). RDF is a very flexible representation for building graphs and ontologies, however, it is interesting to note that RDF has a fixed graph data structure that can be implemented as a graph schema in TigerGraph.

We found that by directly defining an RDF Graph Schema in TigerGraph made it relatively trivial to load FIBO and make it available within TigerGraph. Since the approach is based on RDF, it has the added advantage of being able to load any RDF data, OWL ontologies, and SKOS vocabularies. The logical data model of RDF (See Figure 2) was used as a guideline for creating the TigerGraph Graph Schema for RDF. We based the TigerGraph RDF schema on the logical relationships between RDF Resource, Subject, Predicate, Object, Statement, and Graph, so this makes it easily recognizable to semantic web practitioners. The TigerGraph RDF graph schema has four vertex types: Statement, Resource, Predicate, and Graph. The Statement Vertex Type is connected to the Resource, Predicate, and Graph vertex types via subject, predicate, object, and graph edges (see Figure 3). This structure also makes it easy to analyze the structure of FIBO using GSQL-based graph algorithms, for example, to find paths between FIBO concepts, or to identify the minimal set of FIBO needed to support a particular application.

Note: All the screenshots for Figures 3 to 8 are from GraphStudio, TigerGraph’s visual design tool for graph modeling and querying.

Figure 2: RDF Logical Data Model

Figure 3: The TigerGraph RDF Graph Schema

3. Mapping and Ingesting FIBO

The EDM Council releases FIBO in multiple RDF serializations including N-Quads format. The N-Quads format is convenient because it can be read by TigerGraph’s CSV parser and the subject, predicate, object, and graph columns can easily be mapped to the TigerGraph RDF schema. The FIBO N-Quads file is shown as a CSV data source in Figure 4.

Figure 4: FIBO NQuads file processed as CSV

We can use GraphStudio to easily map, or associate, the columns in the FIBO file to the entities and their attributes in the TigerGraph graph schema. Figure 5A shows a sample mapping of FIBO N-Quads to the predicate edge type between Statement and Predicate. Figure 5B then drills down to show how individual FIBO columns are mapped to individual edge attributes. The Concat ‘helper’ function concatenates the subject, predicate, and object to be used as the identifier for Statement.

Figure 5B: Mapping individual elements from FIBO RDF to attributes of a TigerGraph edge.

The complete mapping to load FIBO into TigerGraph is shown in Figure 6. The maps are displayed as dotted lines between the FIBO source document and the edge types in the RDF schema in TigerGraph. The mapping is accomplished using 4 maps to the object, subject, predicate, and graph edge types of the RDF schema. The primary key of the RDF statement vertex is a function of the concatenation of the subject, predicate, and object identifiers.

Figure 6: Complete Mapping FIBO N-Quads to The RDF Graph Schema.

4. Exploring FIBO In GraphStudio

Once FIBO is loaded, users can use GraphStudio to explore FIBO (See Figure 7). They can also write queries to perform inference or machine learning, for example, to implement graph algorithms or to classify data in terms of FIBO classes, or to integrate data from other sources, like Legal Entity Identifiers, and ultimate beneficiary links. It is also easy to use GSQL to implement the OWL/RDFS inferences used by FIBO.

Figure 7: Corporation Subgraph of FIBO Rendered in GraphStudio

5. FIBO Data Privacy using MultiGraph

MultiGraph, a TigerGraph unique capability, makes it possible for FIBO ontology to be shared among various graph instances. MultiGraph enables an administrator to define multiple graph data domains, each with own set of authorized users and roles. These graph domains can overlap, that is, different graphs can share some data and keep some other data private. In the case of FIBO, every graph domain should have access to the ontology itself, but each graph may have other data, especially financial account data, which needs to be tightly controlled. MultiGraph is designed for heavily-regulated industries such as Finance, Healthcare, Pharmaceutical, for covering risk, compliance, and privacy requirements. MultiGraph supports multiple tenancy, fine-grained privileges, overlapping graphs, and hierarchical subgraphs.

Conclusion

TigerGraph easily ingests FIBO, one of the largest and most complex ontologies in the world. TigerGraph provides multiple advantages for financial institutions, including 1) finding multi-hop paths between FIBO concepts, 2) determining the minimum set of FIBO needed to support a particular set of data, and 3) integrating FIBO with a high-performance and scalable hybrid transactional/analytical platform.

TigerGraph lets you have your cake and eat it too: TigerGraph’s ability to customize its graph representation to easily interoperate with complex financial enterprise ontologies such as FIBO alongside the graph solutions provides competitive advantages to business with real-time recommendations, fraud detection, risk analysis, and much more. This adaptability and flexibility to scale up and scale out as needed allow TigerGraph to span from massive enterprise-wide knowledge graphs to real-world business solutions. TigerGraph’s FIBO-fueled financial fabric enables enterprise customers to continuously catalog and harmonize their data in financial industry-standard knowledge graphs and to selectively share that data using MultiGraph to business customers operating real-time business systems, which in turn share insights back to the enterprise knowledge graph.

 

You Might Also Like

TigerGraph Showcases Unrivaled Performance at Scale

TigerGraph Showcases Unrivaled Performance at Scale

January 12, 2023
How to Create a Visual Graph Analytics Application Using TigerGraph Insights in 30 mins

How to Create a Visual Graph...

November 14, 2022
Turbocharge your business intelligence with TigerGraph’s ML Workbench on TigerGraph Cloud

Turbocharge your business intelligence with TigerGraph’s...

November 14, 2022

Introducing TigerGraph 3.0

July 1, 2020

Everything to Know to Pass your TigerGraph Certification Test

June 24, 2020

Neo4j 4.0 Fabric – A Look Behind the Curtain

February 7, 2020

TigerGraph Blog

  • Categories
    • blogs
      • About TigerGraph
      • Benchmark
      • Business
      • Community
      • Compliance
      • Customer
      • Customer 360
      • Cybersecurity
      • Developers
      • Digital Twin
      • eCommerce
      • Emerging Use Cases
      • Entity Resolution
      • Finance
      • Fraud / Anti-Money Laundering
      • GQL
      • Graph Database Market
      • Graph Databases
      • GSQL
      • Healthcare
      • Machine Learning / AI
      • Podcast
      • Supply Chain
      • TigerGraph
      • TigerGraph Cloud
    • Graph AI On Demand
      • Analysts and Research
      • Customer 360 and Entity Resolution
      • Customer Spotlight
      • Development
      • Finance, Banking, Insurance
      • Keynote
      • Session
    • Video
  • Recent Posts

    • It’s Time to Harness the Power of Graph Technology [Infographic]
    • TigerGraph Showcases Unrivaled Performance at Scale
    • TigerGraph 101 An Introduction to Graph | Jan 26th @ 9am PST
    • Data Science Salon New York
    • Tech For Retail
    TigerGraph

    Product

    SOLUTIONS

    customers

    RESOURCES

    start for free

    TIGERGRAPH DB
    • Overview
    • Features
    • GSQL Query Language
    GRAPH DATA SCIENCE
    • Graph Data Science Library
    • Machine Learning Workbench
    TIGERGRAPH CLOUD
    • Overview
    • Cloud Starter Kits
    • Login
    • FAQ
    • Pricing
    • Cloud Marketplaces
    USEr TOOLS
    • GraphStudio
    • TigerGraph Insights
    • Application Workbenches
    • Connectors and Drivers
    • Starter Kits
    • openCypher Support
    SOLUTIONS
    • Why Graph?
    industry
    • Advertising, Media & Entertainment
    • Financial Services
    • Healthcare & Life Sciences
    use cases
    • Benefits
    • Product & Service Marketing
    • Entity Resolution
    • Customer 360/MDM
    • Recommendation Engine
    • Anti-Money Laundering
    • Cybersecurity Threat Detection
    • Fraud Detection
    • Risk Assessment & Monitoring
    • Energy Management
    • Network & IT Management
    • Supply Chain Analysis
    • AI & Machine Learning
    • Geospatial Analysis
    • Time Series Analysis
    success stories
    • Customer Success Stories

    Partners

    Partner program
    • Partner Benefits
    • TigerGraph Partners
    • Sign Up
    LIBRARY
    • Resources
    • Benchmark
    • Webinars
    Events
    • Trade Shows
    • Graph + AI Summit
    • Million Dollar Challenge
    EDUCATION
    • Training & Certifications
    Blog
    • TigerGraph Blog
    DEVELOPERS
    • Developers Hub
    • Community Forum
    • Documentation
    • Ecosystem

    COMPANY

    Company
    • Overview
    • Careers
    • News
    • Press Release
    • Awards
    • Legal
    • Patents
    • Security and Compliance
    • Contact
    Get Started
    • Start Free
    • Compare Editions
    • Online Demo - Test Drive
    • Request a Demo

    Product

    • Overview
    • TigerGraph 3.0
    • TIGERGRAPH DB
    • TIGERGRAPH CLOUD
    • GRAPHSTUDIO
    • TRY NOW

    customers

    • success stories

    RESOURCES

    • LIBRARY
    • Events
    • EDUCATION
    • BLOG
    • DEVELOPERS

    SOLUTIONS

    • SOLUTIONS
    • use cases
    • industry

    Partners

    • partner program

    company

    • Overview
    • news
    • Press Release
    • Awards

    start for free

    • Request Demo
    • take a test drive
    • SUPPORT
    • COMMUNITY
    • CONTACT
    • Copyright © 2023 TigerGraph
    • Privacy Policy
    • Linkedin
    • Facebook
    • Twitter

    Copyright © 2020 TigerGraph | Privacy Policy

    Copyright © 2020 TigerGraph Privacy Policy

    • SUPPORT
    • COMMUNITY
    • COMPANY
    • CONTACT
    • Linkedin
    • Facebook
    • Twitter

    Copyright © 2020 TigerGraph

    Privacy Policy

    • Products
    • Solutions
    • Customers
    • Partners
    • Resources
    • Company
    • START FREE
    START FOR FREE
    START FOR FREE
    TigerGraph
    PRODUCT
    PRODUCT
    • Overview
    • GraphStudio UI
    • Graph Data Science Library
    TIGERGRAPH DB
    • Overview
    • Features
    • GSQL Query Language
    TIGERGRAPH CLOUD
    • Overview
    • Cloud Starter Kits
    TRY TIGERGRAPH
    • Get Started for Free
    • Compare Editions
    SOLUTIONS
    SOLUTIONS
    • Why Graph?
    use cases
    • Benefits
    • Product & Service Marketing
    • Entity Resolution
    • Customer Journey/360
    • Recommendation Engine
    • Anti-Money Laundering (AML)
    • Cybersecurity Threat Detection
    • Fraud Detection
    • Risk Assessment & Monitoring
    • Energy Management
    • Network Resources Optimization
    • Supply Chain Analysis
    • AI & Machine Learning
    • Geospatial Analysis
    • Time Series Analysis
    industry
    • Advertising, Media & Entertainment
    • Financial Services
    • Healthcare & Life Sciences
    CUSTOMERS
    read all success stories

     

    PARTNERS
    Partner program
    • Partner Benefits
    • TigerGraph Partners
    • Sign Up
    RESOURCES
    LIBRARY
    • Resource Library
    • Benchmark
    • Webinars
    Events
    • Trade Shows
    • Graph + AI Summit
    • Graph for All - Million Dollar Challenge
    EDUCATION
    • TigerGraph Academy
    • Certification
    Blog
    • TigerGraph Blog
    DEVELOPERS
    • Developers Hub
    • Community Forum
    • Documentation
    • Ecosystem
    COMPANY
    COMPANY
    • Overview
    • Leadership
    • Careers  
    NEWS
    PRESS RELEASE
    AWARDS
    START FREE
    Start Free
    • Request a Demo
    • SUPPORT
    • COMMUNITY
    • CONTACT
    Dr. Jay Yu

    Dr. Jay Yu | VP of Product and Innovation

    Dr. Jay Yu is the VP of Product and Innovation at TigerGraph, responsible for driving product strategy and roadmap, as well as fostering innovation in graph database engine and graph solutions. He is a proven hands-on full-stack innovator, strategic thinker, leader, and evangelist for new technology and product, with 25+ years of industry experience ranging from highly scalable distributed database engine company (Teradata), B2B e-commerce services startup, to consumer-facing financial applications company (Intuit). He received his PhD from the University of Wisconsin - Madison, where he specialized in large scale parallel database systems

    Todd Blaschka | COO

    Todd Blaschka is a veteran in the enterprise software industry. He is passionate about creating entirely new segments in data, analytics and AI, with the distinction of establishing graph analytics as a Gartner Top 10 Data & Analytics trend two years in a row. By fervently focusing on critical industry and customer challenges, the companies under Todd's leadership have delivered significant quantifiable results to the largest brands in the world through channel and solution sales approach. Prior to TigerGraph, Todd led go to market and customer experience functions at Clustrix (acquired by MariaDB), Dataguise and IBM.